
Technical Deep Dive: yellowpages (v1.0.0)

Joseph J. Kearney, Conor Deegan, David Nugent, Alex Pruden

June 19, 2025

1 Introduction

yellowpages[1] enables Bitcoin users to attest their existing elliptic curve cryp-
tography (ECC) keys to new quantum-resistant keys as a safeguard against
future quantum attacks. Unlike purely conceptual proposals, yellowpages is a
live, fully functional cryptographic attestation service. Users can generate a
post-quantum proof of Bitcoin ownership, timestamping this proof in a dedi-
cated directory, where it can be verified as required later. This introduction
outlines the system’s architecture and our design choices.

Over 6.2 million BTC verification keys are currently exposed [2], putting

$̃600B in assets at risk once a cryptographically relevant quantum computer
(CRQC) [3] is available. Rather than wait for a protocol upgrade, yellow-
pages provides an opt-in, proactive layer of security. The initial release pri-
oritizes practical security and privacy: it implements NIST-standardized post-
quantum cryptography [4] specifically, the ML-DSA & SLH-DSA digital sig-
nature schemes and Trusted Execution Environments (TEEs) to ensure that
Bitcoin public keys are never revealed publicly during the attestation process.
Furthermore, the only information that is stored is the Bitcoin account and the
newly created post-quantum accounts. Through the use of ML-DSA-44, SLH-
DSA-SHA2-128s PQ signature schemes, an AWS Nitro Enclave-based proving
engine [5], and a Project Eleven (P11) Proof Directory, yellowpages’ system
provides tangible quantum resilience from day one.

2 System Architecture

System Overview: yellowpages is composed of three primary components:
the User Client, the Proving Engine, and the Proof Directory. Together, these
components allow for secure generation of PQ and classical proofs, attestation,
and verification, storage and timestamping of said proofs. The User (e.g. a Bit-
coin holder) interacts with yellowpages through a User Client, which provides
key generation and signing operations. The Proving Engine is a secure service
that verifies the user’s submitted attestations. Completed proofs are recorded in

1



the P11 Proof Directory, which is a publicly accessible directory of attestation
records.

User Client: The User Client is how the user interacts with the yellow-
pages. It is the interface by which the user provides information to the Proving
Engine to create the proof. Furthermore it allows the user to generate ML-DSA
and SLH-DSA key pairs, and create signatures with them. The only external
element that the user will directly interact with is their own Bitcoin wallet in
order to create a signature using their Bitcoin keys. Through the User Client,
the user can register proofs using the Proving Engine and recall proofs from the
Proof Directory.

Proving Engine: To maximize security, the Proving Engine runs inside
a TEE built on AWS Nitro Enclaves and managed via Evervault’s Enclaves
platform [6]. Nitro Enclaves provide an isolated, hardware-protected VM with
no persistent storage, no shell access, and no external networking by default.
This ensures that sensitive data processed during proof creation is confined to
a tamper-resistant TEE with heavily restricted I/O. Evervault’s infrastructure
orchestrates the TEE deployment, leveraging AWS Nitro’s attestation features
to guarantee that only the intended, verified code is running inside. The Proving
Engine code bundle is cryptographically signed and attested, giving confidence
that the TEE is executing the authentic yellowpages verification logic. By de-
sign, even the server host and cloud provider cannot inspect TEE memory or
extract secrets from it. This architecture means that the user can have confi-
dence that the information they provide is not leaked by the application.

Proof Directory: yellowpages requires a mechanism to store the proofs
created by the Proving Engine, and provide them to users when requested. The
initial implementation uses a secure off-chain repository, which stores generated
proofs along with a timestamp and identifier for each proof. The repository is
as a public directory of attestations, which any party can query or retrieve a
stored proof from to independently verify. Although a fully decentralized ledger
or IPFS-based storage is envisioned in the design, an off-chain database is used
at day one for reliability and speed. This architecture balances security and
practicality: the critical proving operations occur in a locked-down TEE, avoid-
ing exposure of the user’s raw public key, while the resulting proofs are stored
in a format accessible for public auditing. Firstly the proofs are recieved by
the Proof Directory from the Proving Engine as JSON files. This JSON file is
then stored in a NoSQL database. Users can also download created proofs as a
JSON file.

Component Interactions: When a user initiates the attestation process,
they first generate a PQ key pair (detailed in the next section) and prepare
the required signatures locally (the Bitcoin signature is done within their Bit-
coin wallet). The user’s client then sends a proof request to the yellowpages
service, containing the minimal data needed: the Bitcoin address, the new PQ

2



address(es), and the signatures proving ownership (along with the PQ public
key(s), which is needed for signature verification). The Proving Engine validates
the cryptographic signatures and, if all checks pass, constructs a proof attesta-
tion. The proof is then written to the Proof Repository and the signatures and
public keys are destroyed.

An area that is of critical importance but not covered in depth within this
technical document is the trust model for the yellowpages. A complete deepdive
into the trust model is included in Appendix A.

3 PQ Key Generation and Address Structure

All yellowpages PQ keys are derived deterministically from a single seed phrase,
following well-known wallet standards. The User Client begins by generating a
new 24-word mnemonic (per BIP-39)[7]. That mnemonic is converted to a high-
entropy master seed, and then to a sequence of child entropy values via BIP-85
(Deterministic Entropy Derivation)[8]. Each derived entropy is used to generate
one post-quantum key pair. In the current system, two different PQ schemes
are used: a lattice-based scheme (ML-DSA-44) and a hash-based scheme (SLH-
DSA-SHA2-128s). One key pair of each type is derived from the mnemonic,
yielding two new PQ key pairs per user. Crucially, because this process is de-
terministic, a user only needs to securely back up the single 24-word phrase.
All the resulting PQ private keys and public keys can be regenerated at any
time from that phrase. This design avoids reliance on random one-off keys or
a central key store, so keys can be recovered or rotated without loss of continuity.

Each post-quantum public key in yellowpages is represented by a compact
PQ address, similar in spirit to a Bitcoin address. The PQ address is created
by hashing the full PQ public key, prepending a version byte (to identify the
key type), and encoding the result in Bech32m. For example, a PQ address
might look like yp1qpq... [9] and implicitly contain a tag for “ML-DSA” or
“SLH-DSA” based on that version byte. This design makes a PQ address a
human-readable, fixed-format identifier for the public key, just as bc1... is for
Bitcoin.

Using an address abstraction for PQ keys has several benefits. First, it is
much more compact than the raw public key (which can be hundreds or thou-
sands of bytes for PQ algorithms). This keeps the attestation messages short
and easier to store or print (even fit into a QR code). Second, the PQ address
is based on a one-way hash of the public key, so it hides the full key. Observers
seeing only the address cannot derive the public key from it. Thus, the user’s
PQ public key is not exposed until the proof is presented to verifiers, preserv-
ing privacy and security. Third, the Bech32m encoding includes an inherent
checksum. Any alteration to even one character of a PQ address will break
the checksum, making it invalid. This prevents accidental or malicious tamper-

3



ing. Finally, by tagging each address with a version identifier, the system can
evolve seamlessly: new PQ algorithms can be introduced by assigning them new
version bytes, without changing the attestation protocol.

4 Secure Attestation Generation

After assembling the signed proof data, the User Client transmits it to the
Proving Engine over a secure TLS/HTTPS channel. In addition to TLS, the
system establishes a second, quantum-resistant encryption layer inside that
channel. Specifically, the User Client and the Proving Engine perform a post-
quantum key exchange (using the ML-KEM-768 lattice-based key encapsulation
mechanism)[10] to derive a shared session key. The entire proof payload, com-
prising the Bitcoin address, PQ address(es), signatures, and PQ public key, is
then encrypted with AES-256 using this PQ-derived key. Finally, the encrypted
payload is transmitted over the TLS connection.

Figure 1: Diagram showing the data transfer mechanism used to send informa-
tion from the User client to the Proving Engine (TEE).

This layered encryption provides defence in depth. Even if an adversary
records the TLS traffic now and somehow cracks TLS later, they would still
face the inner PQ encryption on the payload. By combining ephemeral session
keys (from TLS) with a post-quantum KEM inside TLS, yellowpages ensures

4



the attestation request remains confidential against both classical and future
quantum attacks. Once the Proving Engine receives and decrypts the request,
it performs signature verification and proof construction as described above.

5 Attestation Verification

In yellowpages, the proof record that is published contains only the user’s Bit-
coin address and any linked PQ address(es). The actual digital signatures and
public keys used to create the proof are never written to the Proof Directory.
As a result, keys never exposed. Instead, the user’s client submits the Bitcoin
address, the new PQ address(es), and the associated signature data to the yel-
lowpages Proving Engine. Inside the Proving Engine, verification is performed
for each signature against the corresponding public key and address. Only if
all of these checks succeed does the Proving Engine assemble the final proof
attestation and output it. All sensitive input data (the signatures and public
keys) remain confined within the Proving Engine and are not exposed in the
published proof found on the Proof Directory.

Once the Proving Engine has verified the proof data, it requests an attes-
tation document from the AWS Nitro Security Module, passing in the Bitcoin
and PQ addresses as user data to the Proof Directory. This results in a Nitro-
Enclaves-signed attestation document which includes the addresses along with
hashes of the container image. Users can inspect the source code of the Proving
Engine, along with the container hashes shown during deployment, to verify
that attestation documents of this form will only be produced by the Proving
Engine once it has successfully verified a proof request. Hence, trusting that
these attestation documents are valid proofs.

A successful check implies that the proof was generated by the validated
yellowpages code running in the Proving Engine. In effect, trusting the Proving
Engines’ signed output and the attested identity of its code is sufficient to accept
the proof. This attestation mechanism ensures that the proof was minted by
verified code in a secure environment, giving confidence that the linked addresses
genuinely belong to the same user.

6 Conclusion

By cryptographically tying current Bitcoin addresses to new quantum-safe keys
now, holders effectively “lock in” their migration. yellowpages gives users time-
stamped proof of key ownership in one unified statement. It leverages vetted
PQ algorithms and standard key derivation (BIP-39/BIP-85) to make adoption
seamless, and it employs secure TEEs to preserve privacy throughout the pro-
cess.

5



In summary, yellowpages delivers a concrete, deployed solution that bridges
Bitcoin’s present with a post-quantum future. It records, in a tamper-evident
way, which Bitcoin address a user controlled before a potential quantum break.
Should the network ever need to repopulate balances on a post-quantum chain,
or migrate funds through another coordinated solution, these proofs will stand as
durable evidence of ownership. By making it easy to establish that link today,
yellowpages gives responsible holders an extra layer of preparedness without
requiring any immediate changes to Bitcoin itself.

References

[1] J. Kearney, J. C. Deegan, D. Nugent, and A. Pruden, “yellow-
pages: post-quantum proofs of bitcoin ownership, version 0.0.1,”
https://www.yellowpages.xyz/whitepaper/v0.0.1.pdf, 2025, accessed:
2025-06-09.

[2] (2025) Btc at risk of quantum attack. Project 11. Accessed: 2025-06-09.
[Online]. Available: https://www.projecteleven.com/btc-at-risk

[3] M. Mosca and M. Piani, “Quantum threat timeline report 2021: Estimating
the time to a cryptographically relevant quantum computer,” Global Risk
Institute, Toronto, Tech. Rep., 2022.

[4] National Institute of Standards and Technology, “Nist ir 8545: Status
report on the fourth round of the nist post-quantum cryptography
standardization process,” U.S. Department of Commerce, Gaithersburg,
MD, Tech. Rep., 2025, accessed: 2025-06-09. [Online]. Available:
https://csrc.nist.gov/publications/detail/nistir/8545/final

[5] Amazon Web Services (AWS), “Security design of the
aws nitro system,” Amazon Web Services, Inc., Seat-
tle, Tech. Rep., 2023, accessed: 2025-06-09. [Online]. Avail-
able: https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-
design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf

[6] (2025) Enclaves documentation: Deploy secure enclaves at
scale. Evervault. Accessed: 2025-06-09. [Online]. Available:
https://docs.evervault.com/products/enclaves

[7] P. Rusnak and M. Palatinus, “Bip-0039: Mnemonic code for generating de-
terministic keys,” Bitcoin Improvement Proposals, 2013, accessed: 2025-06-
09. [Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-
0039.mediawiki

[8] I. Coleman, “Bip-0085: Deterministic entropy from bip32 root key,” Bitcoin
Improvement Proposals, 2020, accessed: 2025-06-09. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0085.mediawiki

6



[9] p 11, “pq-address-rs,” GitHub repository, 2025, accessed: 2025-06-11.
[Online]. Available: https://github.com/p-11/pq-address-rs

[10] National Institute of Standards and Technology, “Fips 203: Module-
lattice-based key-encapsulation mechanism (ml-kem),” U.S. Department
of Commerce, Tech. Rep., 2024, accessed: 2025-06-11. [Online]. Available:
https://csrc.nist.gov/pubs/fips/203/final

A Trust Model of yellowpages v1.0.0

yellowpages is a registry of post-quantum proofs of Bitcoin ownership. We’d
like to be transparent about our current trust model, explain how we can get
closer to the zero trust dream for yellowpages, and realistic about why zero trust
wasn’t what we set out to achieve in version 1.0.0.

So let’s discuss the trust model involved in each aspect of yellowpages, in
order of importance.

A.1 Privacy

yellowpages registration requires the submission of a Bitcoin signed message.
This involves making an ECDSA signature over a message, and is supported
by most popular wallets. However, these signatures are public-key-recoverable,
which means that the Bitcoin user’s public key can be derived from the signa-
ture. Public key recovery is a feature that has been useful in Bitcoin. However,
now that Bitcoin public keys are at quantum-risk, we treat them in yellowpages
as highly sensitive data. Hence, we must keep these Bitcoin signed messages pri-
vate, using techniques such as post-quantum encryption and Trusted Execution
Environments (TEEs).

A.1.1 Trust Required

Web Application:
We currently run the yellowpages.xyz as a standard web application, which runs
in any browser.

• Project Eleven: although we have open-sourced the web application,
Project Eleven could in theory deploy a malicious application to yellow-
pages.xyz which is different to the source code shown in our GitHub repos-
itory.

• Vercel: we use Vercel for deployments.

• Build Tools & Dependencies: we use build tools such as Next.js along
with standard software dependencies. We use best practices to ensure we
are doing integrity checks and using well-audited dependencies wherever
possible.

7



• GitHub: we use GitHub for source control.

Proving Engine:

• AWS Nitro Enclaves: our Proving Engine runs within an AWS Nitro
Enclave.

• Build Tools & Dependencies: we use build tools such as Rust, Docker,
Evervault Enclaves, and GitHub Actions in our deployment process, and
use software dependencies to run the Proving Engine. All of the build tools
and dependencies for the Proving Engine are open-source, and we use best
practices to ensure we are doing integrity checks and using well-audited
dependencies wherever possible.

• GitHub: we use GitHub for source control.

A.1.2 Future Improvement: Adding a Non-Web Client

We can remove the Privacy trust in Project Eleven, Vercel, and GitHub by
providing a non-web client application, such as a CLI or desktop application.
We chose to do a web application for the version 1 of yellowpages, to provide
a free application that is accessible to the maximum number of Bitcoin users,
without requiring them to install anything.

A.2 Proof Legitimacy

If we publish a proof that a Bitcoin address has been linked to post-quantum
addresses, it must be seen as a legitimate proof. Different proving methods have
different trust assumptions, such as trusting cryptography schemes, cryptogra-
phy implementations, and centralized entities.

A.2.1 Trust Required

• AWS Nitro Enclaves: when all proof data has been verified, we publish
a Nitro Enclaves attestation document which includes the addresses whose
linkage has been successfully proven. The source code of our Proving
Engine can be audited by users to verify that attestation documents of
this form will only be generated by the Proving Engine once all of the
supplied proof data has been verified.

• Build Tools & Dependencies: we use build tools such as Rust, Docker,
Evervault Enclaves, and GitHub Actions in our deployment process, and
use software dependencies to run the Proving Engine. All of the build tools
and dependencies for the Proving Engine are open-source, and we use best
practices to ensure we are doing integrity checks and using well-audited
dependencies wherever possible.

8



A.2.2 Future Improvements: Using a ZK Proving Technology

We can remove the Proof Legitimacy trust in AWS Nitro Enclaves by switching
to a ZK proving technology, such as ZK-SNARKs. As these technologies rely
solely on cryptography, they don’t place trust in a single entity.

As the privacy of our users’ data is our #1 priority, we decided to spend time
reviewing the “zero knowledge” property of SNARKs before opting to use them
in yellowpages. By uploading ZK-SNARK proofs on yellowpages, we would
effectively be uploading encrypted Bitcoin public keys on the internet. Hence,
it is critical that the zero knowledge property is post-quantum secure.

During our design phase, we spoke to some developers of post-quantum
SNARKs, but none of them could guarantee us audited, post-quantum privacy in
the near-term – they could only guarantee us post-quantum soundness. Hence,
we decided not to include SNARKs in the first version of yellowpages.

A.3 Timestamping

Most proving technologies, including most ZK-SNARKs and TEEs, produce
proofs which rely on elliptic curve cryptography (ECC). As ECC is not post-
quantum secure, these proofs could be forged after Q-day. However, timestamp-
ing the proofs allows us to use proving systems which rely on ECC, provided
we only consider proofs which have timestamps before Q-day to be valid.

A.3.1 Trust Required

Decentralized OR Project Eleven: AWS Nitro Enclaves don’t guarantee
that the timestamps in their attestation documents will be accurate, so an extra
timestamp is added to proofs when they are registered to yellowpages. If a user
wants to create a decentralized timestamp of their proof, they can publish a
hash of their proof on a popular blockchain.

A.3.2 Future Improvement: Decentralized Timestamping using a
Blockchain

When a proof is created, we could store a hash of the proof on a trusted
blockchain, such as the Bitcoin blockchain. The block height it was entered
to the blockchain can be used as a timestamp. As a more cost-effective solu-
tion, we could timestamp multiple proofs at once, by placing a merkle root or
similar on the blockchain. This will take some decent engineering effort to do
properly, as we don’t want to clog the Bitcoin blockchain with unnecessary data.
For this reason, we decided not to include it in version 1.0.0 of yellowpages.

A.4 Storage

If a user submits a proof to yellowpages, they should have confidence that it
won’t be censored via deletion, nor that a cyber attack could destroy their proof.

9



A.4.1 Trust Required

Decentralized OR Project Eleven: users can download their proof if they
want to, and upload it onto a decentralized storage platform. Otherwise it will
be stored by Project Eleven. We use best practices for database management
and generate backups at a regular interval.

A.4.2 Future Improvement: IPFS

We could store all proofs on a decentralized storage solution such as IPFS. We
want yellowpages to be free, and we decided not to add IPFS as a cost in version
1 of yellowpages.

10


